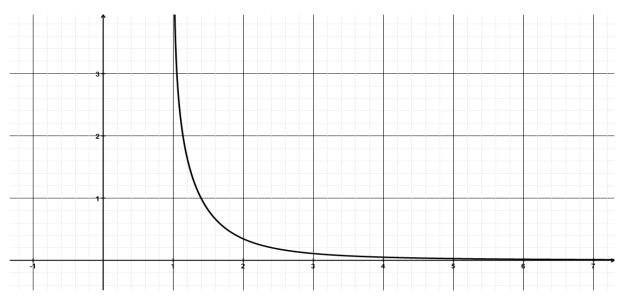
4sc Série n°9 Prof : Selmi Sofien

Exercice n°1

On donne ci dessous, la courbe représentative de la fonction g définie sur $\left]l,+\infty\right[$ pa

$$g(x) = \frac{1}{2} \ln \left(\frac{1}{(x-1)^2} + 1 \right)$$
 où les droites d'équations $x = 1$ et $y = 0$ sont des asymptotes.



- 1) a- Montrer en utilisant le graphe que g est une bijection de $]1,+\infty[$ sur un intervalle J que l'on déterminera.
 - b- On note f la fonction réciproque de g ($f(x) = g^{-1}(x)$). Expliciter f(x)
 - c- Tracer dans le même repère la courbe représentative ζ de f.
 - d- Vérifier que pour tout $x \in \left]0,+\infty\right[$; $(f(x)-1)^2 = \frac{e^{-2x}}{1-e^{-2x}}$
 - e- Soit S la surface du plan limitée par la courbe ζ et les droites d'équations : y=1; $x=\ln 2$ et $x=\ln 3$. Calculer le volume du solide de révolution engendré par la rotation de la surfece S autour de l'axe des abscisses.
- 2) Soit h la fonction définie sur $\left]0, \frac{\pi}{2}\right[\text{ par } h(x) = \frac{1}{2}\ln(1+\tan^2 x).$
 - a- Montrer que h est une bijection de $\left]0,\frac{\pi}{2}\right[$ sur $\left]0,+\infty\right[$.
 - b- Montrer que h^{-1} est dérivable sur $\left]0,+\infty\right[$ et que $(h^{-1})'(x)=f(x)-1$.

- 3) Pour tout $n \in IN^*$, on pose $u_n = \int_{\ln \sqrt{2}}^{\ln 2} \frac{dx}{\sqrt{e^{2nx} 1}}$.
 - a- Montrer que $u_1 = \frac{\pi}{12}$ et intérpréter géométriquement le résultat.
 - b- Prouver que pour tout $n \in IN^*$, $u_n > 0$.
 - c- Montrer que la suite (u_n) est décroissante. En déduire qu'elle est convergente.
 - d- Montrer que pour tout $n \in IN^*$, $u_n \le \frac{1}{\sqrt{2^n 1}}$ et en déduire $\lim_{n \to +\infty} u_n$.

Exercice n°2

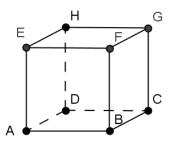
Soit ABCDEFGH un cube de l'espace tel que AB = 1. On munit l'espace d'un repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1) a- Vérifier que : $\overrightarrow{DE} \wedge \overrightarrow{DB} = \overrightarrow{AG}$.
 - b- Donner une équation cartésienne du plan

$$P = (EBD).$$

2) On désigne par S l'ensemble des points M(x,y,z) de

l'espace tels que :
$$x^2 + y^2 + z^2 - x - y - z + \frac{1}{2} = 0$$
.



- a-Montrer que S est une sphère dont on précisera le centre Ω et le rayon R.
- b- Vérifier que $\Omega \in (AG)$.
- c- Montrer que $S \bigcap P$ est un cercle dont on précisera le rayon et le centre .
- 3) Soit S' la sphère de centre J(1,-1,-2) et de rayon $R' = \sqrt{\frac{15}{2}}$.
 - a- Déterminer une équation développé de S'.
 - b- Montrer que $S \cap S'$ est un cercle dont-on précisera le centre et le rayon.