9-Jonction Logarithme népérien:

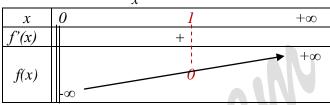
1. Définition :

On appelle fonction Logarithme népérien la primitive de la fonction $f(x) = \frac{1}{x} sur l'intervalle]0$, $+\infty[$. notée Ln(x) ou bien Log(x).

99. Propriétés:

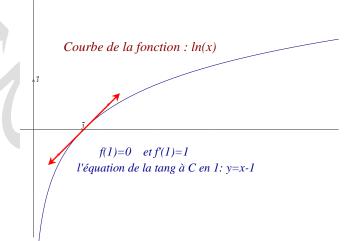
étant donnée la fonction f(x) = ln(x) *on a :*

- $D_f = 10$, $+\infty$
- $\lim_{x \to 0^+} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$
- ln(x) est une fonction continue et dérivable $sur: [0, +\infty]$
- $\forall x > 0$ on $a f'(x) = \frac{1}{x} d'où$



ullet Donc on peut déduire le signe de la fonction ln(x) :

- $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ donc C_f admet une branche parabolique de direction (O, \vec{i}) .
- 1. Propriétés algébriques et complément de limites:
 - $\lim_{x \to 0^{+}} \ln(x) = -\infty$; $\lim_{x \to 0^{+}} x \ln(x) = 0$; $\lim_{x \to +\infty} \ln(x) = +\infty$; $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$; $\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1$; $\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$. • $[\ln(x)]' = \frac{1}{x}$.
 - si f(x) est une fonction dérivable sur un intervalle I et



• ln(x) est une fonction strictement croissante sur $]0, +\infty[$ donc $: 0 < a < b \Leftrightarrow ln(a) < ln(b)$ $ln(a) = ln(b) \Leftrightarrow a = b$ • ln(ab) = ln(a) + ln(b); $ln(a^n) = n ln(a)$ • $ln(\frac{1}{a}) = -ln(a)$; $ln(\frac{a}{b}) = ln(a) - ln(b)$ • ln(1) = 0 & ln(e) = 1 où $e \approx 2,71$...

• $\forall a \in \mathbb{R}$: $ln(x)=a \Leftrightarrow x=e^a$

tel que : $\forall x \in I$ on a : f(x) > 0 alors ln[f(x)] est dérivable

sur I et
$$(ln[f(x)]) = \frac{f'(x)}{f(x)}$$

99-Jonction exponentielle:

1. Définition :

On appelle fonction exponentielle la réciproque de la fonction $f(x) = \ln(x)$ sur l'intervalle]0, $+\infty[$.

99. Propriétés:

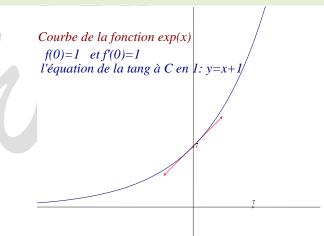
étant donnée la fonction $f(x) = e^x$ on a :

- $\bullet D_f = \mathbb{R}$
- $\lim_{x \to +\infty} f(x) = +\infty$; $\lim_{x \to -\infty} f(x) = 0$
- e^x est une fonction continue et dérivable sur \mathbb{R}
- $\forall x \in \mathbb{R}$, on $a : f'(x) = e^x d'où$:

$v x \in \mathbb{R}$, on $u \cdot f(x) = u \cdot ou \cdot c$			
X	-∞	ϱ	$+\infty$
f'(x)		+	
f(x)	0 —		+8

- $\forall x \in \mathbb{R} \text{ on } a : e^x > 0$
- $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ donc C_f admet une branche

parabolique de direction (O, \vec{j}) .



99. Propriétés algébriques et complément de limites:

• $\lim_{x \to -\infty} e^x = 0$; $\lim_{x \to -\infty} x e^x = 0$; $\lim_{x \to +\infty} e^x = +\infty$;

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \; ; \; \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \quad ;$$

- $\bullet [e^x]'=e^x$.
- si f(x) est une fonction dérivable sur un intervalle I alors $e^{f(x)}$ est dérivable sur I et

$$\left(e^{f(x)}\right) = f'(x)e^{f(x)}$$

• e^x est une fonction strictement croissante sur \mathbb{R}

$$donc: \forall a < b \Leftrightarrow e^a < e^b$$
$$e^a = e^b \Leftrightarrow a = b$$

$$e^{a} = e^{b} \Leftrightarrow a = b$$

 $\bullet e^{a} \times e^{b} = e^{a+b}; (e^{a})^{n} = e^{na}$

•
$$e^{-a} = \frac{1}{e^a}$$
; $\frac{e^a}{e^b} = e^{a-b}$

- $\forall a > 0$: $e^x = a \Leftrightarrow x = \ln(a)$
- $\forall x \in \mathbb{R}$, on a: $ln(e^x) = x \& \forall x > 0$, on a: $e^{ln(x)} = x$