▶ Fonction Logarithme Népérien :

⊗ Définition:

La fonction **Logarithme** Népérien, notée Log ou Ln , est la **primitive** sur]0,+∞ de

la fonction $x \mapsto \frac{1}{x}$ qui s'annule en 1 signifie $\ln x = \int_1^x \frac{1}{t} dt$, x > 0.

⇒ Conséquence :

•
$$Ln:]0, +\infty[\rightarrow IR$$
 avec $(Ln)'(x) = \frac{1}{x};$ et $Ln 1 = 0$

⊗ Propriétés :

• Ln (a b) = Ln a + Ln b ; pour tout
$$a > 0$$
 et $b > 0$.

• Ln
$$\frac{1}{b}$$
 = - Ln b ; pour b > 0.

• Ln
$$\frac{a}{b}$$
 = Ln a - Ln b ; pour a > 0 et b > 0.

• Ln
$$(a^n)$$
 = n Ln a ; pour a > 0 et n $\in \mathbb{Z}$.

• Ln(
$$\sqrt{a}$$
) = $\frac{1}{2}$ Ln a • Ln($\sqrt[n]{a}$) = $\frac{1}{n}$ Ln a ; pour a > 0.

\otimes Limites:

$$\bullet \lim_{x \to +\infty} Ln x = +\infty \qquad \bullet \lim_{x \to 0^{+}} Ln x = -\infty$$

$$\bullet \lim_{x \to +\infty} \frac{Ln x}{x} = 0 \quad (\mathbf{0}^+)$$

$$\bullet \lim_{x \to 0^+} x Ln x = 0 \quad (\mathbf{0}^-)$$

$$\bullet \lim_{x \to 0^+} \frac{Ln x}{x} = -\infty$$

$$\bullet \lim_{x \to +\infty} \frac{Ln^m x}{x^n} = 0 \qquad \bullet \lim_{x \to 0^+} x^n . Ln^m x = 0$$

$$\bullet \lim_{x \to 0} \frac{Ln(1+x)}{x} = 1 \qquad \bullet \lim_{x \to 1} \frac{Lnx}{x-1} = 1$$

\otimes Sens de variation :

La fonction Logarithme Népérien est strictement croissante sur IR^* + et on a le tableau de variation suivant :

x	0 + ∞
(Ln) '(x)	+
Ln x	-∞ +∞

\Rightarrow Conséquences importantes :

- La fonction Logarithme Népérien est une bijection de]0,+∞[sur IR ;
- L'équation : Ln x = 1 possède une seule solution notée : e; on a donc Ln e = 1.
- Pour a > 0 et b > 0 on a: $[Ln \ a = Ln \ b] \Leftrightarrow [a = b].$ $[Ln \ a \ge Ln \ b] \Leftrightarrow [a \ge b].$
- Pour tout $x \in]0,1]$ on a: Ln $x \le 0$.
- Pour tout $x \in]1,+\infty[$ on a: **Ln x > 0.**

⊗ <u>Dérivées et primitives :</u>

- Si u est une fonction dérivable et strictement positive sur un intervalle I de IR alors la fonction : (Ln o u) est dérivable sur I et on a : (Ln (u)) '(x) = $\frac{u'(x)}{u(x)}$.
- Les primitives de la fonction définie sur I par $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})}{\mathbf{u}(\mathbf{x})}$ sont les fonctions F définies sur I par :

F (x) = Ln
$$|u(x)| + k$$
; avec $k \in IR$

\otimes Primitive de Lnx:

Une **primitive** de la fonction : $x \mapsto Ln(x)$ sur $]0, +\infty[$ est la fonction : $x \mapsto x \cdot Lnx - x + k$. avec $k \in \mathbb{R}$.