Exercice 1

Pour chacune des 14 questions suivantes une seule des trois réponses proposées est exacte

Pou	r chacune des 14 questions suivantes une seule des trois réponses pi	roposées est exacte
1	La partie réelle du nombre complexe $z = (2+i)^2$ est	2
		4
		3
2	La partie imaginaire du nombre complexe $z = (1-i)^2$ est	-2 <i>i</i>
4	La partie imaginaire du nombre compiexe $z = (1 - i)$ est	0
		-
		-2
3	Le module du nombre complexe $z = 4 + 3i$ est égal à :	7
		$\sqrt{7}$
		5
4	Un argument du nombre complexe $z = 2 - 2i$ est égal à	π
•	on argument au nombre complete 2 2 2 cot egal a	$\overline{2}$
		π
		$-\frac{4}{4}$ 3π
		3π
		4
5	Si $z = 2 - 5i$ alors	$\overline{z} = 2 + 5i$
		$\overline{z} = -2 + 5i$
		$\overline{z} = -2 - 5i$
6	π	
U	Soit z le nombre complexe de module 2 et d'argument $\frac{\pi}{3}$ alors	$z = \sqrt{3} + i$
	3	$z = 1 + i\sqrt{3}$
		σ . π
		$z = 2 + i\frac{\pi}{3}$
7	La forme exponentielle de $z = -2 - 2i$ est	i
		$z = -2\sqrt{2}e^{i\frac{\pi}{4}}$
		$z = 2\sqrt{2}e^{-i\frac{\pi}{4}}$
		$z = 2\sqrt{2}e^{-i\frac{3\pi}{4}}$
8	π . π	$-\frac{3\pi}{2}$
	La forme exponentielle de $\frac{-\cos\frac{\pi}{8} - \sin\frac{\pi}{8}}{\pi}$ est	$z = -e^{-\frac{3\pi}{40}i}$
	La forme exponentielle de $\frac{0}{\pi}$ est	$z = -e^{\frac{37\pi}{40}i}$
	$\cos\frac{\pi}{5} + \sin\frac{\pi}{5}$	
		$\cos \frac{\pi}{-} + \sin \frac{\pi}{-}$
		$z = \frac{8}{8} e^{i\pi}$
		$\cos \frac{\pi}{2} + \sin \frac{\pi}{2}$
		$z = \frac{\cos\frac{\pi}{8} + \sin\frac{\pi}{8}}{\cos\frac{\pi}{5} + \sin\frac{\pi}{5}}e^{i\pi}$
9	Soient A et B deux points du plan complexe muni du repère	AB = 2
	orthonormé (O, \vec{u}, \vec{v}) d'affixes : $z_A = 1 + i$ et $z_B = 3 - i$. Soit I le	$z_I = 2$
	milieu de [AB] d'affixe z_i alors :	
	innieu de [AD] d'anixe z_I alors.	$z_I = \frac{z_A - z_B}{2}$
10	Soient A, B, C et D quatre points distincts deux à deux du plan	(7 -7)
	complexe muni du repère orthonormé direct (O, \vec{u}, \vec{v}) . Une	$\operatorname{arg}\!\left(rac{z_{B}-z_{A}}{z_{D}-z_{C}} ight)$
	mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{CD})$ est	$arg(z_B - z_A)$
	, ,	$\frac{\arg(z_D - z_C)}{\arg(z_D - z_C)}$
İ		$\operatorname{arg}\!\left(rac{z_D-z_C}{z_B-z_A} ight)$
		$(z_B - z_A)$

© M. Wissem Fligène Page 1

11	Soient A, B et C trois points distincts deux à deux du plan	A, B et C sont alignés
	complexe muni du repère orthonormé direct $\left(O, \vec{u}, \vec{v}\right)$. Si	ABC est un triangle
	$\frac{z_C - z_A}{1} = 3i$ alors	rectangle en A
	$z_B - z_A$	A, B et C appartiennent au cercle de diamètre [AB]
12	Le plan complexe est rapporté à un repère orthonormé $\left(O,ec{u},ec{v} ight)$.	le cercle de diamètre [AB]
	Soit A et B les points d'affixes respectives $1+i$ et $2i$. L'ensemble	le cercle de diamètre AB
	des points M dont l'affixe z vérifie $2 z-1-i = \sqrt{2}$ est	la médiatrice du segment
		[AB]
13	Soient A, B et C trois points distincts deux à deux du plan	OACB est un
	complexe muni du repère orthonormé (O, \vec{u}, \vec{v}) .	parallélogramme
	Si $z_C = z_A + z_B$ alors	A, B et C sont alignés
		A est le milieu de [BC]
14	Le plan complexe est rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) .	le cercle de diamètre [AB]
	Soit A et B les points d'affixes respectives $1+i$ et $2i$. L'ensemble	le cercle de diamètre AB
	des points M dont l'affixe z vérifie $ z-1-i = z-2i $ est	la médiatrice du segment [AB]

Exercice 2

Les quatre questions de cet exercice sont indépendantes.

1. On définit pour tout nombre complexe z différent de 0 et de (-3), $f(z) = \frac{z^2 - 1}{z(z+3)}$

Ecrire sous forme algébrique les nombres suivants : f(1-i) et f(1+i)

- 2. Ecrire sous forme algébrique : $(2+i)^3 + (1-2i)^3$
- 3. Résoudre dans l'ensemble des nombres complexes les équations suivantes :

a.
$$3(z-i)-3i(z-2+3i)=(i-1)(z+i)$$

b.
$$z - 2\overline{z} = 9 + 2i$$

- 4. Pour tout nombre complexe $z \neq i$, On pose $Z = \frac{z 1 + 2i}{z i}$
 - a. Déterminer l'ensemble (E) des points M(z) pour lesquels M'(Z) appartient à l'axe des réels
 - b. Déterminer l'ensemble (F) des points M(z) pour lesquels M'(Z) appartient à l'axe des imaginaires

Exercice 3

Dans le plan complexe P, muni d'un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$, on considère les points A et B

d'affixes respectives : $z_A = 1$ et $z_B = i$. On pose $Z = \frac{z-1}{iz+1}$ pour tout $z \neq i$

- 1. Déterminer les éventuelles valeurs de z telles que : Z = 1 + 2i
- 2. a. Montrer que |iz+1|=|z-i|
 - b. Déterminer et tracer l'ensemble (E₁) des points M d'affixes z tels que |Z|=1
- 3. a. En posant z = x + iy où x et y sont des réels, vérifier que la partie réelle de Z est

$$Re(Z) = \frac{x+y-1}{x^2+(1-y)^2}$$
 et que la partie imaginaire de Z et $Im(Z) = \frac{-x^2-y^2+x+y}{x^2+(1-y)^2}$

- b. Déterminer et tracer l'ensemble (E2) des points M d'affixes z tels que Z soit un nombre réel
- c. Déterminer et tracer l'ensemble (E₃) des points M d'affixes z tels que z soit un imaginaire pur

© M. Wissem Fligène Page 2

Exercice 4

Le plan complexe P est rapporté à un repère orthonormé direct $\left(O, \vec{u}, \vec{v}\right)$

On considère les points A(i) et B(-i). A tout point M distinct de B d'affixe z on associe le point M' d'affixe z' tel que $z' = \frac{1-z}{1-iz}$

- 1. a. Déterminer l'ensemble des points M tel que z' soit réel
 - b. Déterminer l'ensemble des points M tel que |z'| = 1
- 2. a. Montrer que $\forall z \in C \setminus \{-i\}$; $z' + i = \frac{-1+i}{z+i}$
 - b. En déduire que $(\vec{u}, \hat{BM'}) + (\vec{u}, \hat{BM}) = \frac{3\pi}{4} [2\pi]$ et que $BM \times BM' = \sqrt{2}$
 - c. En déduire que si M appartient à un cercle de centre B et de rayon 1 alors M' appartient à un cercle que l'on précisera

Exercice 5

On donne les nombres complexes suivants : $z_1 = 5\sqrt{2}(1+i)$ et $z_2 = -5(1+i\sqrt{3})$

- 1. Déterminer le module et un argument des nombres complexes : z_1 , z_2 , $\overline{z_1}$ et $\frac{1}{z_1}$
- 2. Soit Z le nombre complexe tel que $z_1Z=z_2$ Ecrire Z sous forme algébrique, puis sous forme trigonométrique
- 3. Déduisez-en les valeurs exactes de $\cos\left(\frac{13\pi}{12}\right)$ et $\sin\left(\frac{13\pi}{12}\right)$

Exercice 6

On considère le nombre complexe $z = 1 + i\sqrt{3}$

- 1. Déterminer la forme trigonométrique de z; -z; z^2 et $\frac{2}{z}$
- 2. Montrer que z^{2016} est un réel
- 3. Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v})

On désigne par A, B et C les points d'affixes respectives z; -z et z^2

- a. Déterminer une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$
- b. En déduire la nature du triangle ABC

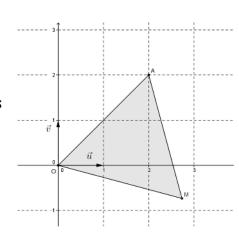
Exercice 7 😊

Le plan est rapporté au repère orthonormé direct (O, \vec{u}, \vec{v}) .

Le triangle OAM est équilatéral.

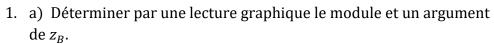
On donne A(2,2).

Déterminer le module et un argument de chacun des affixes des points A et M

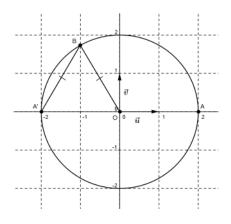


Exercice 8 @

Dans la figure ci-contre, (O, \vec{u}, \vec{v}) est un repère orthonormé direct du plan, ζ est le cercle de centre O et de rayon C et C est un point de C d'affixe C.



- b) En déduire la forme algébrique de z_B .
- 2. a) Placer sur la figure le point B' d'affixe z_B , tel que z_B , $= \overline{z_B}$
 - b) Montrer que *OBA'B'* est un losange.



Exercice 9

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on désigne par A, B et C les

points d'affixes respectives
$$a = \frac{\sqrt{3} + i}{2}$$
; $b = \frac{-1 + i\sqrt{3}}{2}$ et $c = a + b$

- 1. Ecrire les nombres complexes a et b sous forme exponentielles
- 2. Placer les points A et B dans (O, \vec{u}, \vec{v})
- 3. Montrer que OACB est un carré
- 4. En déduire la forme trigonométrique de *c*
- 5. Calculer alors $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$

Exercice 10 ©

- 1. Soit les nombres complexes $z_1 = \sqrt{2}e^{i\frac{\pi}{4}}$ et $z_2 = 1 + i\sqrt{3}$
 - a) Ecrire z_1 sous forme algébrique.
 - b) Ecrire z_2 sous forme exponentielle.
- 2. Dans le plan complexe P muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A et B d'affixes respectifs $z_A = \sqrt{2}z_1$ et $z_B = i\bar{z_2}$
 - a) Montrer que OAB est un triangle isocèle.
 - b) Ecrire $\frac{z_A}{z_B}$ sous forme algébrique puis sous forme exponentielle.
 - c) En déduire une mesure de l'angle $(\overrightarrow{OB}, \overrightarrow{OA})$.
 - d) Donner les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- 3. Pour tout point $M(z) \in P \setminus \{B\}$, on associe le point M'(z') tel que : $z' = \frac{z z_A}{z z_B}$.
 - a) Déterminer l'ensemble des points M lorsque M' décrit la droite $(0, \vec{u})$.
 - b) Déterminer l'ensemble des points M' lorsque M décrit la médiatrice du segment [AB].

Exercice 11 ©

On considère les nombres complexes suivants: z=1+i , $y=1-i\sqrt{3}$, $U=\frac{z^3}{v}$

- 1) Écrire sous forme exponentielle z et y. En déduire que $U = \frac{\sqrt{2}}{2}e^{i\frac{\pi}{12}}$.
- 2) Montrer que U^{24} est un réel strictement positif et que U^6 est imaginaire.
- 3) a) Vérifier que $U = \frac{\sqrt{3} + 1}{4} + i \frac{\sqrt{3} 1}{4}$
 - b) En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$

Exercice 12 [©]

Dans le plan complexe P rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A, B et D d'affixes respectives a = -i, b = 3i et d = -2 + i

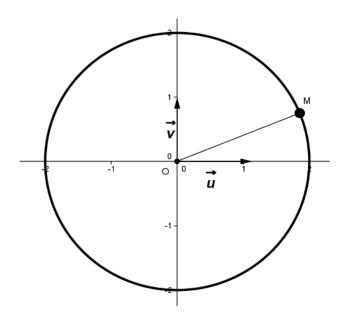
- I- 1- Placer les points A, B et D dans le repère $(0, \vec{u}, \vec{v})$.
 - 2- a- Ecrire $\frac{d-a}{d-b}$ sous forme algébrique.
 - b- Déduire que ABD est un triangle rectangle et isocèle en D.
 - c- Déterminer l'affixe c du point C tel que ACBD soit un carré.
- II- A tout point M distinct de B d'affixe z, on associe le point M' d'affixe z' définie par : $z' = \frac{iz-1}{z-3i}$
 - 1- Déterminer l'ensemble des points M tel que z' est imaginaire.
 - 2- a- Montrer que $|z'| = \frac{MA}{MB}$
 - b- En déduire que si M appartient à la médiatrice du segment [AB] alors le point M' appartient à un cercle que l'on déterminera.
 - 3- Soit I le milieu du segment [AB] d'affixe z_I .
 - a- Vérifier que $z' z_I = \frac{-4}{z b}$.
 - b- En déduire que $(\widehat{\vec{u}}, \widehat{IM'}) \equiv \pi (\widehat{\vec{u}}, \widehat{BM})[2\pi]$.
 - c- Déterminer l'ensemble des points M' lorsque M décrit la demi-droite $[B, \vec{u})$ privé de B.

Exercice 13 [©]

Le plan est muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$

Dans l'annexe ci-dessous M représente le point d'affixe $z=2e^{i\alpha}$ avec $\alpha\in\left]0,\frac{\pi}{2}\right[$

- 1- Donner l'écriture exponentielle de chacun des nombres complexes $\frac{1}{z}$; $-\frac{1}{z}$ et $\frac{z^2}{\overline{z}}$
- 2- Placer (sur l'annexe) les points N, P et Q d'affixes respectives $\frac{1}{z}$; $-\frac{1}{z}$ et $\frac{z^2}{\overline{z}}$
- 3- Déterminer la valeur de α pour laquelle les points O, N et Q sont alignés.



Exercice 14 @

Dans le plan complexe P rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on désigne par A, B et C les points d'affixes respectives i, -1 et 1.

A tout point M d'affixe z associe le point M' d'affixe z' tel que $z' = \frac{z+1}{z-i}$ (z un nombre complexe diffèrent de i).

- 1- a- Déterminer l'ensembles des points M tels que z' soit réel.
 - b- Déterminer l'ensemble de point M tel que z' soit imaginaire.
- 2- a-Montrer que pour tout $z \neq i$ on a : $OM' = \frac{BM}{AM}$.
 - b- Déterminer l'ensemble des points M' lorsque M décrit la médiatrice de segment [AB].
- 3- a- Montrer que $|(z'-1)(z-i)| = \sqrt{2}$.
 - b- En déduire l'ensemble des points M' lorsque le point M décrit le cercle de centre A est de rayon $\sqrt{2}$

Exercice 15 ©

Le plan complexe est muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

On considère les points A et B d'affixes respectifs $z_A = \sqrt{3} + i$ et $z_B = -1 + i\sqrt{3}$.

- 1- a- Ecrire sous forme exponentielle z_A et z_B .
 - b- Construire les points A et B dans le repère.
 - c- Ecrire $\frac{z_B}{z_A}$ sous forme exponentielle.
 - d- Déduire que OAB est un triangle rectangle et isocèle en O.
 - e- Déterminer sous forme algébrique l'affixe du point $\mathcal C$ pour que le quadrilatère OACB soit un carré.
- 2- Soit un point M d'affixe $z_M = 1 + e^{2i\theta}$ où $\theta \in \left[0, \frac{\pi}{2}\right]$.
 - a- Montrer que $z_M=2\cos\theta\;e^{i\theta}$ puis vérifier que c'est son écriture est sous forme exponentielle.
 - b- Déterminer la valeur de θ pour que M varie sur le cercle de centrer O et de rayon 2.
 - c- Déterminer la valeur de θ pour que ${\it O}$, ${\it A}$ et ${\it M}$ soient alignées.