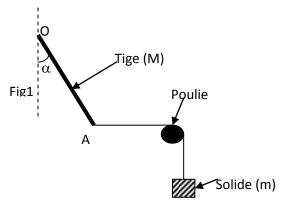
Lycée 15/11/1955 sfax

Matière : Sciences Physiques

Série de révision Physique

Prof: M.Neifer


Niveau: 2^{ème} SC

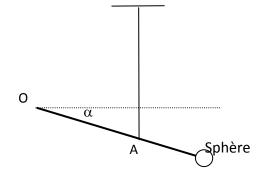
Moment d'une force - théorème des moments

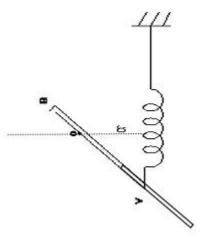
Exercice 1:

Une tige rigide et homogène de longueur L et de masse M=500g, est suspendue par l'une de ses extrémités , notée O, à un axe (Δ) horizontal qui lui est perpendiculaire et autour duquel elle peut tourner sans frottement . On maintient la tige en équilibre suivant une direction faisant avec la verticale un angle $\alpha=30^\circ$. L'équilibre est assuré à l'aide d'un fil de masse négligeable lié à l'extrémité libre A de la tige et tendu

horizontalement à l'autre extrémité du fil qui passe à

travers la gorge d'une poulie on accroche un solide de masse m (voir figure 1). On néglige toutes les forces de frottement.

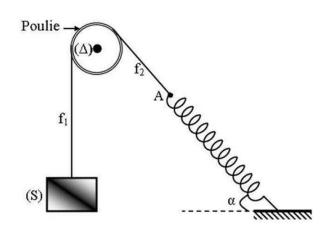

- 1)Quelles sont les forces extérieures appliquées à la tige ? Les représenter.
- 2)a-A l'aide du théorème des moments appliqué à la tige en équilibre, établir l'expression de la tension du fil appliquée au point A en fonction de : M; $\|\vec{g}\|$ et α .
 - b- En déduire l'expression de la masse m du solide . Calculer sa valeur.


Déterminer la valeur de la réaction de l'axe sur la tige en O ainsi que l'angle β qu'elle fait avec la verticale.

Exercice 2:

On utilise dans cet exercice

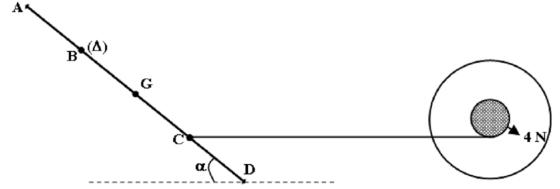
- Une sphère métallique homogène, de rayon $r=3\ cm$, de masse M=1Kg.
- Une tige métallique de longueur L=47~cm, très fine ,dont la masse est négligeable devant celle de la sphère .On prendra $\|\vec{g}\|=10NKg^{-1}$. On soude la tige à la sphère .Le dispositif ainsi constitué peut tourner, dans le plan vertical, autour d'un axe (Δ), horizontal ,passant par l'extrémité O de la tige. En un point A de la tige, tel que : OA=a=40cm on fixe un fil que l'on supposera toujours vertical. Lorsque le système est en équilibre la tige fait un angle α avec l'horizontale.
- 1) Représenter les forces exercées la tige à l'équilibre.
- 2) Par application du théorème des moments, établir l'expression de la tension du fil $\|\vec{T}_A\|$ du fil appliquée en A. Calculer sa valeur.
- 3) Déterminer la réaction $\|\vec{R}\|$ de l'axe en O.
- 4) On remplace maintenant le fil par un ressort de raideur k et de masse négligeable. Ce ressort que l'on supposera toujours vertical n'est pas tendu lorsque la tige est horizontale. Lorsque le système est en équilibre la tige fait un angle $\theta = 6^{\circ}$ avec l'horizontale. Calculer l'allongement du ressort à l'équilibre. En déduire la raideur k du ressort.



Exercice 3:

Un solide (S) de masse m = 200 g est relié à un fil de masse négligeable passant par la gorge d'une poulie à axe fixe (A), de masse négligeable et de rayon r.

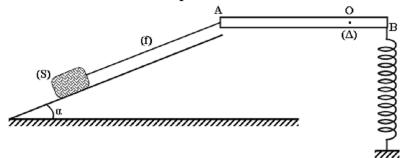
L'autre extrémité du fil est attachée à un ressort de raideur k et de masse négligeable. A l'équilibre, l'axe du ressort fait un angle $\alpha=30^\circ$ avec l'horizontale et le ressort est allongé de $\Delta\ell=4$ cm. On néglige tout type de frottement.



- 1) a- Représenter les forces exercées sur le solide (S).
 - b- Ecrire la condition d'équilibre de (S) et déterminer l'expression de la tension du fil f_1 , puis calculer sa valeur.
- 2) a- Représenter les forces exercées sur la poulie.
 - b- En appliquant le théorème des moments, déterminer la tension du fil f_2 .
 - c- Déduire la tension du fil f_2 au point A.
- 3) Déterminer la valeur de la raideur du ressort k.
- 4) Par projection de la relation vectorielle, traduisant l'équilibre de la poulie dans un repère orthonormé, montrer que la valeur de la réaction \vec{R} de l'axe (A) est $\|\vec{R}\| = m$. $\|\vec{g}\| \sqrt{1 + 2sin\alpha}$. Calculer sa valeur. On prendra : $\|\vec{g}\| = 10NKg^{-1}$.

Exercice $n^{\circ}4$:

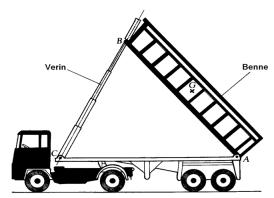
On dispose d'une tige homogène de section constante, de masse M=460~g, de longueur AD=L=80~cm et pouvant tourner autour d'un axe (Δ) passant par B. Cette tige est attachée en C à un dynamomètre qui la maintient dans une position d'équilibre faisant un angle $\alpha=30^\circ$ par rapport à l'horizontale, comme le montre la figure ci-dessous.


$$AB = BG = GC = CD = L/4$$
. On prendra $\|\vec{g}\| = 10NKg^{-1}$.

- 1) a- Faire le bilan de toutes les forces qui s'exercent sur la tige en équilibre.
 - b-Représenter ces forces en utilisant l'échelle suivante : $1N \longrightarrow 1cm$.
 - c- Déduire graphiquement la valeur de la réaction \vec{R} de l'axe (Δ).
- 2) On se propose de déterminer les caractéristiques de la réaction \vec{R} de l'axe (Δ).
 - a- Ecrire la condition d'équilibre de la tige.
 - b- Choisir un système d'axes orthonormés, et écrire les composantes des forces exercées sur la tige suivant ces deux axes.
 - c- Déduire alors les caractéristiques de \vec{R}
- 3) On se propose maintenant de vérifier l'indication du dynamomètre.
 - a. Ecrire la condition d'équilibre du solide par application du théorème des moments.
 - b. Retrouver à partir à partir de cette condition d'équilibre la valeur indiquée par le dynamomètre.

Exercice 5:

On considère le dispositif suivant, il est formé par :



- Une tige AB de longueur L, de masse négligeable et mobile autour d'un axe fixe (Δ) placé au point O (perpendiculaire au plan de la figure), tel que OB = 4L.
- Un ressort de raideur $k = 30 N. m^{-1}$, de masse négligeable et perpendiculaire à la tige au point B où il est attaché.
- Un solide (S) de masse 400 g, posé sur un plan incliné de $\alpha = 30^{\circ}$ par rapport à l'horizontale, et en équilibre grâce à un fil (f) attaché à l'extrémité A de la tige. Le plan est supposé lisse. On prendra $\|\vec{g}\| = 10NKg^{-1}$.
- 1) a- Représenter les forces extérieures qui s'exercent sur le solide (S) à l'équilibre.
 - b- Ecrire la condition d'équilibre du solide (S).
 - c- Etudier cet équilibre et déterminer l'expression de la tension du fil (f), $\|\vec{T}\|$ en fonction de m, et α .et $\|\vec{g}\|$. Calculer la valeur de $\|\vec{T}\|$.
- 2) a- Représenter les forces extérieures qui s'exercent sur la tige AB à l'équilibre.
 - b- Ecrire la condition d'équilibre, traduite par le théorème des moments, de la tige AB.
 - c- Donner l'expression du moment de chacune de ces forces.
 - d- Déduire l'expression de la tension du ressort \vec{T}_B au point B en fonction de m, $\|\vec{g}\|$ et α .
 - e- Calculer la valeur de . $\|\vec{T}_B\|$
 - h- Déduire rallongement A/ du ressort.
- 3) a-Ecrire la deuxième condition d'équilibre de la tige.
- b- Etudier cet équilibre et déterminer la valeur de la réaction de l'axe (Δ) ainsi que celle de l'angle β que fait la réaction \vec{R} avec la verticale.

Exercice 6:

Le schéma ci-dessous représente une benne d'un camion. La masse de cette benne est de 25 tonnes.

- 1) Faites le bilan des forces qui s'exercent sur la benne.
- 2) Calculer le poids de cette benne. Enoncer les conditions d'équilibre d'un solide soumis à trois forces. On prendra $\|\vec{g}\| = 10NKg^{-1}$
- 3) On admettra que l'action du vérin sur la benne (qui s'exerce au point B) a pour droite d'action l'axe du vérin (voir figure). Tracer les deux droites d'action connues. En appliquant les conditions d'équilibre à la benne, tracer ensuite la droite d'action de la force exercée par la remorque sur la benne en A.
- 4) Tracer en couleur le vecteur force représentant le poids de la benne (échelle : 1*cm* 50000 *N*).
- 5) En appliquant la condition d'équilibre.
- a-Représenter à la même échelle la force \vec{F} exercée par le vérin en B et la réaction \vec{R} exercée par
 - la remorque en A
- b) Déduire la valeur des forces $\|\vec{F}\|$ et $\|\vec{R}\|$.

