Lycée 15 Novembre 1955	Sciences physiques	Année scolaire 2019/2020
M.Abdmouleh Nabil:	Sérien°8: pile	Bac: Sciences expérimentales
Tel: 98972 418	_	_

Exercice n°1

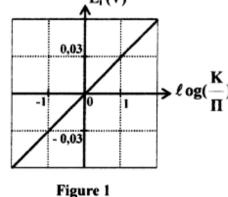
Lors d'une séance de travaux pratiques, on dispose du matériel suivant :

- une solution aqueuse (S) de chlorure d'étain SnCl₂ de concentration C₁;
- une solution aqueuse (S') de sulfate de cuivre II CuSO₄ de concentration C₂;
- des béchers, un pont électrolytique (pont salin), de l'eau distillée ;
- un ampèremètre, un voltmètre, un résistor et des fils de connexions.

On réalise la pile (P) de symbole: Sn | Sn²⁺ (C₁) || Cu²⁺ (C₂) | Cu et on mesure à l'aide du voltmètre, la différence de potentiel entre ses bornes : on lit 0,48 V.

- 1) Représenter le schéma de la pile (P) et indiquer, en le justifiant, si l'électrode d'étain Sn est une borne positive ou une borne négative.
- Préciser le sens du courant électrique lorsque la pile débite dans le circuit extérieur.
- Ecrire l'équation de la réaction qui se produit spontanément.
- 4) Le rôle du pont électrolytique est-il :
 - de fermer le circuit ?
 - de faire apparaître un dépôt d'étain ?
 - de rétablir l'électroneutralité des solutions dans chacun des compartiments ? (choisir la ou les bonnes réponses).
- 5) Les concentrations initiales C1 et C2 sont égales.
 - a Déterminer la valeur de la force électromotrice normale E° de cette pile.
 - b Calculer la constante d'équilibre de la réaction associée à la pile ainsi constituée.
 - c L'équilibre étant atteint, quel serait l'effet d'un ajout d'eau au compartiment de droite de la pile. On supposera qu'aucune des électrodes métalliques ne disparaisse complètement.

Exercice n°2


A 25 °C, on réalise la pile électrochimique (P) de symbole : Co | Coⁿ⁺ (C) | Niⁿ⁺ (0.1 mol.L⁻¹) | Ni : n représente le nombre d'électrons mis en jeu dans les équations formelles associées à chacun des couples rédox de la pile (P) et C la concentration molaire initiale en ions Con+.

- 1) a- Ecrire l'équation chimique associée à la pile (P).
 - b- Exprimer la fem initiale Ei de la pile (P) en fonction de sa fem standard E°, n et la fonction des concentrations Π relative à l'équation chimique associée à cette pile.
 - c- Montrer que E_i peut s'écrire : $E_i = \frac{0.06}{n} log(\frac{K}{H})$; K étant la

constante d'équilibre relative à l'équation chimique associée à (P).

2) Pour différentes valeurs de la concentration initiale C, on mesure la fem initiale E_i de la pile (P). Ceci permet de tracer la courbe de la

figure 1 représentant l'évolution de E_i en fonction de $log(\frac{K}{\pi})$.

En exploitant la courbe de la figure 1, montrer que n = 2.

- 3) Pour une valeur $C_1 = 1$ mol.L⁻¹ de la concentration initiale C. la fem initiale de la pile (P) est $E_{i1} = -0.01$ V.
 - a- Ecrire en le justifiant, l'équation de la réaction qui se produit spontanément lorsque la pile (P) débite du courant électrique.
 - b- Montrer que la valeur de la constante d'équilibre relative à l'équation chimique associée à la pile (P) est K = 4.64. En déduire la valeur de la fem standard E° de la pile (P).

 $\mathbf{E}_{Ce^{3}, Te}^{\circ} = -0.28 \, \mathbf{V}$. Comparer les pouvoirs oxydants des couples rédox considérés.

- 4) On considère la pile (P) à l'état initial, pour laquelle la valeur de la concentration molaire C est $C_1 = 1 \text{ mol.L}^{-1}$. On dilue x fois (x étant un entier naturel tel que x > 1) la solution aqueuse contenant les ions Co^{2^+} . La mesure de la fem initiale de la pile obtenue suite à la dilution, donne $E_{i2} = 0.29.10^{-1} \text{ V}$.
 - a- Préciser en le justifiant, les signes des pôles de la pile obtenue suite à cette dilution.
 - **b-** Montrer que : E_{i2} E_{i1} = 0,03 log(x). En déduire la valeur de x.

Exercice n°3

A 25 °C, on réalise une pile électrochimique (P) à l'aide des deux demi-piles (1) et (2) suivantes :

- demi-pile (1): constituée d'une lame de cobalt qui plonge dans une solution aqueuse de sulfate de cobalt $(Co^{2+} + SO_4^{2-})$ de volume $V_1 = 100$ mL et de concentration molaire C_1 ;
- demi-pile (2): constituée d'une lame de nickel qui plonge dans une solution aqueuse de sulfate de nickel
 (Ni²⁺ + SO⁴¹) de volume V₂ = 100 mL et de concentration molaire C₂.

La fem standard de la pile (P) est : $E^0 = 0.02 V$.

Dans une première étape, on relie les bornes de la pile à un voltmètre qui indique initialement une fem E_i.

Dans une deuxième étape, tout en gardant le voltmètre branché, on relie les bornes de la pile à un résistor de résistance R et un interrupteur (K) tous les deux sont associés en série. On ferme l'interrupteur (K). Après une

durée suffisante Δt_1 de fonctionnement de la pile (P), on observe, entre autres, un dépôt de nickel comme l'indique la figure 1 et le voltmètre indique une fem E_1 non nulle.

- 1) a- Ecrire l'équation chimique associée à la pile (P).
 - b- Déterminer la valeur de la constante d'équilibre
 K relative à l'équation chimique associée à (P).
 - c- Exprimer E_i en fonction de E⁰, C₁ et C₂.
- a- En exploitant le résultat indiqué par la figure 1, préciser, en le justifiant, le pôle positif de la pile (P).
 - b- Ecrire l'équation de la réaction qui se produit spontanément lorsque la pile débite un courant dans le circuit extérieur.

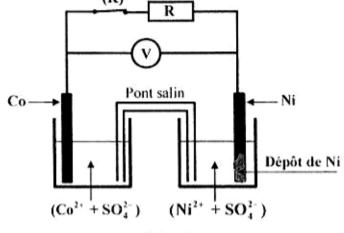


Figure 1

- c- Déduire le signe de la fem E₁.
- 3) a- Après une durée Δt_2 ($\Delta t_2 > \Delta t_1$) de fonctionnement de la pile (P), on constate que la fem E de la pile s'annule lorsque $\left[\mathbf{Co}^{2^*}\right] = 0,1$ mol.L⁻¹. Déterminer, dans ce cas, la valeur de $\left[\mathbf{Ni}^{2^*}\right]$.
 - b- Calculer les valeurs des concentrations initiales C_1 et C_2 . On donne $E_i = 0.05 \, V$.
 - c- Déterminer la masse m du dépôt de nickel déposé après la durée Δt₂. On donne : M(Ni) = 58,7 g.mol⁻¹.

On supposera qu'aucune des électrodes ne sera complètement consommée et que les volumes des solutions restent constants durant le fonctionnement de la pile.