Proposée par Benaich Hichem

SERIE DE PHYSIQUE N° 2

Le dipôle RL

RAPPEL DU COURS

A / La bobine :

I/ La bobine - description et symbole :

Une bobine est un dipôle constitué d'un enroulement dans le même sens , de fil conducteur recouvert d'un vernis isolant . Elle est symbolisée par : (L;r)

L'inductance ${\bf L}$ d'une bobine ne dépend que de ses caractéristiques géométriques , à savoir le nombre total de spires , la longueur et la section moyenne , d'où le nom d'inductance propre .

II/ Le phénomène d'induction électromagnétique :

1°) Le courant induit :

Toute variation de champ magnétique créé dans un circuit électrique fermé situé à proximité du champ , un courant électrique appelé <u>courant induit</u> Cest le phénomène <u>d'induction électromagnétique</u> . L'intensité du courant induit est d'autant plus grande que la variation des caractéristiques du champ inducteur est plus rapide .

2°) La loi de Lenz :

Le sens du courant induit est tel que , par ses effets , il <u>s'oppose à la cause</u> qui lui a donné naissance .

3°) Force électromotrice d'auto-induction:

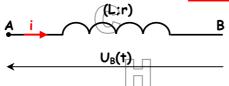
Si une bobine est traversée par un courant d'intensité (t) variable au cours du temps , elle est le siège

d'une f.é.m. d'auto induction e donnée par :
$$e = -L \frac{di}{dt}$$

III/ Tension aux bornes d'une bobine :

Pour une bobine d'inductance L, de résistance r, parcourue par un courant d'intensité i(t) variable au

cours du temps, la tension à ses bornes s'écrit : $U_B(t) = ri + L \frac{di}{dt}$



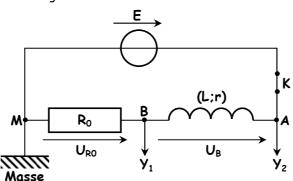
IV/ <u>Energie magnétique E_L emmagasinée par une bobine</u> :

$$\mathsf{E}_\mathsf{L} = \frac{1}{2} \mathsf{L}.\mathsf{i}^2$$

B / Le dipôle RL

I/ Tension UB aux bornes de la bobine :

On réalise le montage de la figure ci-dessous :

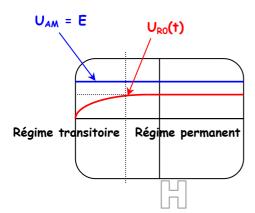


Le dipôle RL

1°) Etude expérimentale de l'établissement

<u>du courant</u>:
On ferme l'interrupteur K.

a) <u>Tension U_{RO}(t) aux bornes du</u> <u>résistor</u> :



c) Etude théorique :

La loi des mailles s'écrit :

$$U_{RO} + U_B = E(1)$$

Or
$$U_{R0} = R_{0}.i$$
 et $U_{B} = r.i + \frac{di}{dt}$

© Equation différentielle i :

(1) devient :
$$R_0 \cdot i + r \cdot i + L \frac{di}{dt} = E^{-1}$$

$$\Rightarrow$$
 (R₀ + r).i + L $\frac{di}{dt}$ = E

$$\Rightarrow$$
 R.i + L $\frac{di}{dt}$ = E avec R = R₀ + r

$$\Rightarrow \frac{R}{L}i + \frac{di}{dt} = \frac{E}{L} \cdot \text{Posons } \tau = \frac{L}{R}$$

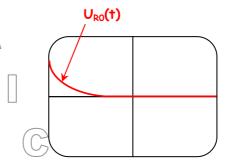
L'équation différentielle devient :

$$\frac{1}{\tau}i + \frac{di}{dt} = \frac{E}{L}$$
 (*)

2°) <u>Etude expérimentale de la rupture</u> du courant:

On ouvre l'interrupteur K.

a) <u>Tension U_{RO}(t) aux bornes du</u> résistor :



La loi des mailles s'écrit :

$$U_{RO} + U_{B} = 0 (1)$$

Or
$$U_{RO} = R_{0.i}$$
 et $U_{B} = r.i + L \frac{di}{dt}$

© Equation différentielle i:

(1) devient :
$$R_0 \cdot i + r \cdot i + L \frac{di}{dt} = 0$$

$$\Rightarrow$$
 (R₀ + r).i + L $\frac{di}{dt}$ = 0

$$\Rightarrow$$
 R.i + L $\frac{di}{dt}$ = 0 avec R = R₀ + r

$$\Rightarrow \frac{R}{L}i + \frac{di}{dt} = 0 \text{ . Posons } \tau = \frac{L}{R}$$

L'équation différentielle devient :

$$\frac{1}{\tau}i + \frac{di}{dt} = 0$$
 (*)

Le dipôle RL

La solution de l'éq. (*) est de la forme:

$$i(t) = A.e^{-\alpha t} + B$$

où \boldsymbol{A} , \boldsymbol{B} et $\boldsymbol{\alpha}$ sont des constantes à déterminer.

$$A \uparrow = 0$$
, $i = 0 \Rightarrow A + B = 0 \Rightarrow B = -A$.

D'où ,
$$i(t) = A.e^{-\alpha t} - A$$

$$\Rightarrow$$
 i(t) = A.($e^{-\alpha t}$ - 1)

$$\frac{di}{dt}$$
 = A.($-\alpha e^{-\alpha t}$) = $-\alpha$. A. $e^{-\alpha t}$

On remplace dans (*):

$$\frac{1}{\tau}$$
.(A.e^{-\alphat} - A) - \alpha.A.e^{-\alphat} = $\frac{E}{L}$

$$\Rightarrow$$
 - α . τ . $e^{-\alpha t}$ + A . $e^{-\alpha t}$ - A = E

$$\Rightarrow \, \frac{\textbf{A}}{\tau} \, . \textbf{e}^{-\alpha t} \, - \, \frac{\textbf{A}}{\tau} \, - \, \alpha . \, \textbf{A} \, \textbf{e}^{-\alpha t} \, = \, \frac{\textbf{E}}{\textbf{L}}$$

$$\Rightarrow (\frac{1}{\tau} - \alpha) . A . e^{-\alpha \tau} - A . \tau = \frac{E}{L}$$

En égalisant membre à membre cette équation qui doit être satisfaite pour toute valeur de **†**, on obtient :

$$-\frac{A}{\tau} = \frac{E}{I}$$

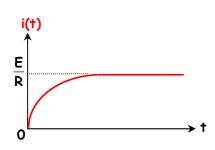
$$\Rightarrow A = -\frac{E.\tau}{L} = -\frac{E.L}{L.R} = -\frac{E}{R}$$

$$\mathsf{et} \ \frac{1}{\tau} \ - \ \alpha = 0 \Rightarrow \alpha = \frac{1}{\tau}$$

Donc, $i(t) = -\frac{E}{R}e^{-\frac{t}{\tau}} + \frac{E}{R}$

soit
$$i(t) = \frac{E}{R} \cdot (1 - e^{-\frac{t}{\tau}})$$

D'où , la courbe représentative de la fonction **i(t)** est la suivante :



La solution de l'éq. (*)' est de la forme :

$$i(t) = A.e^{-\alpha t}$$

où \boldsymbol{A} et $\boldsymbol{\alpha}$ sont des constantes à déterminer .

$$A \dagger = 0$$
, $i = \frac{E}{R} \Rightarrow A = \frac{E}{R}$

D'où, i(t) =
$$\frac{E}{R}$$
.e^{- α t}

$$\frac{di}{dt} = \frac{E}{R} (-\alpha e^{-\alpha t}) = -\alpha \frac{E}{R} e^{-\alpha t}$$

On remplace dans (*)':

$$\frac{1}{\pi}.(\frac{E}{R}.e^{-\alpha t})-\alpha \frac{E}{R}e^{-\alpha t}=0$$

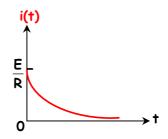
$$\frac{1}{\tau} - \alpha \right) \frac{E}{R} e^{-\alpha t}$$

$$\Rightarrow \frac{1}{\tau} - \alpha = 0 \Rightarrow \alpha = \frac{1}{\tau}$$

$$\Rightarrow \alpha = \frac{1}{RC} \text{ soit } \alpha = \frac{1}{\tau}$$

Donc,
$$i(t) = \frac{E}{R} \cdot e^{-\frac{t}{\tau}}$$

D'où , la courbe représentative de la fonction **i(t)** est la suivante :



Le dipôle RL

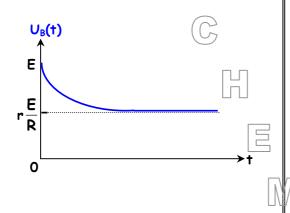
© Expression de UB(t):

$$\begin{aligned} & \underbrace{Expression \ de \ U_{B}(1)}_{U_{B}(1)} = r.i + L \frac{di}{dt} \\ & = r \frac{E}{R} . (1 - e^{-\frac{t}{\tau}}) + L \frac{E}{R} \frac{1}{\tau} e^{-\frac{t}{\tau}} \\ & = r \frac{E}{R} . (1 - e^{-\frac{t}{\tau}}) + L \frac{E}{R.\tau} e^{-\frac{t}{\tau}} \\ & = r \frac{E}{R} . (1 - e^{-\frac{t}{\tau}}) + L \frac{E}{R.\tau} e^{-\frac{t}{\tau}} \end{aligned}$$

$$= \frac{r}{R} E. e^{-\frac{t}{\tau}} - E. e^{-\frac{t}{\tau}}$$
soit
$$U_B(t) = r \frac{E}{R} . (1 - e^{-\frac{t}{\tau}}) + E. e^{-\frac{t}{\tau}}$$

$$U_B(0) = E$$
.
 $\lim_{t\to\infty} U_B(t) = r\frac{E}{R}$.

D'où , la courbe représentative de la fonction $U_B(t)$ est la suivante



Expression de UB(t):

$$U_{B}(t) = r.i + L\frac{di}{dt}$$

$$= r\frac{E}{R}e^{-\frac{t}{\tau}} + L\frac{E}{R}(-\frac{1}{\tau}e^{-\frac{t}{\tau}})$$

$$= r\frac{E}{R}e^{-\frac{t}{\tau}} - L\frac{E}{R.\tau}e^{-\frac{t}{\tau}}$$

$$= \frac{r}{R}E.e^{-\frac{t}{\tau}} - L\frac{E}{R.\frac{L}{R}}e^{-\frac{t}{\tau}}$$

$$= \frac{r}{R}E.e^{-\frac{t}{\tau}} - E.e^{-\frac{t}{\tau}}$$

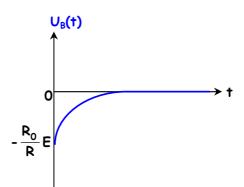
soit
$$U_B(t) = (\frac{r}{R} - 1).E.e^{-\frac{t}{\tau}}$$

$$U_B(0) = (\frac{r}{R} - 1).E = \frac{r - R}{R}E$$

$$= \frac{r - (R_0 + r)}{R}E = -\frac{R_0}{R}E.$$

$$\lim_{\to} U_{B}(t) = 0$$

D'où , la courbe représentative de la fonction $U_B(t)$ est la suivante :



II/ <u>La constante de temps τ d'un dipôle RL</u> :

1°) Analyse dimensionnelle de la constante de temps τ :

D'après la loi d'ohm pour un conducteur ohmique : $\mathbf{u} = \mathbf{R}.\mathbf{i}$, on a $[\mathbf{R}] = \frac{[\mathbf{u}]}{[\mathbf{i}]}$

Pour une bobine purement inductive , $u = L \frac{di}{dt} \Rightarrow [u] = [L] \frac{[i]}{[t]} \Rightarrow [L] = \frac{[u] \cdot [t]}{[i]}$

D'où , $\left[\frac{L}{R}\right] = \frac{[u].[t]}{[i]} \frac{[i]}{[u]} = [t] \Rightarrow \tau$ a la dimension d'un temps exprimé en seconde (s) .

Le dipôle RL

2°) Détermination de la constante de temps τ :

a) Par calcul direct:

Connaissant les valeurs de \mathbf{k} et de \mathbf{L} , on peut calculer directement la valeur de la constante de temps $\tau = RL$.

Détermination graphique (premièreméthode):

Déterminons l'équation de la tangente à $\frac{1}{4}$ courbe i(t) au point d'abscisse t = 0.

Rappel mathématique: L'éq. de la tangente au point d'absc. x_0 s'écrit: $y = f'(x_0).(x-x_0) + f(x_0)$.

$$i(t) = \frac{E}{R} \cdot (1 - e^{-\frac{t}{\tau}})$$
. Donc, $\frac{di}{dt} = \frac{E}{R} \cdot \frac{1}{\tau} = \frac{E}{R \cdot \tau} \cdot e^{-\frac{t}{\tau}} \Rightarrow (\frac{di}{dt})_{t=0} = \frac{E}{R \cdot \tau} \cdot e^{t} \cdot i(0) = 0$.

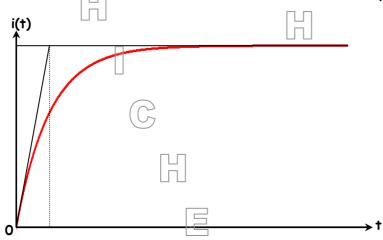
Donc , l'éq. de la tangente s'écrit : $i(t) = \frac{E}{R.\tau} \cdot t$

Déterminons alors l'intersection de cette tangente avec la droite $i = \frac{E}{D}$.

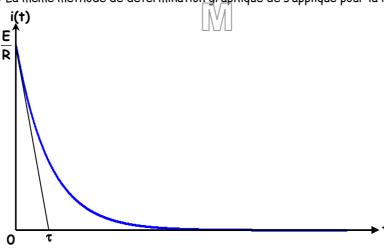
Pour cela , il suffit de résoudre l'éq. : $\frac{E}{R.\tau}$. $t = \frac{E}{R} \Rightarrow \frac{1}{\tau} = 1 \Rightarrow t = \tau$.

<u>Méthode</u>:

L'intersection de la tangente à la courbe i(t) à t=0 avec la droite $i=\frac{E}{R}$ donne donc $t=\tau$.



Remarque : La même méthode de détermination graphique de s'applique pour la rupture du courant .



Le dipôle RL

b) Détermination graphique (deuxième méthode) :

Déterminons l'équation de la tangente à la courbe $U_B(t)$ au point d'abscisse t = 0. Rappel mathématique : L'éq. de la tangente au point d'absc. x_0 s'écrit : $y = f'(x_0).(x-x_0) + f(x_0)$.

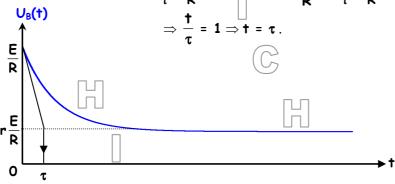
$$U_B(t) = r \frac{E}{R} \cdot (1 - e^{-\frac{t}{\tau}}) + E.e^{-\frac{t}{\tau}}.$$

Donc,
$$\frac{dU_B}{dt} = r\frac{E}{R}\frac{1}{\tau}e^{-\frac{t}{\tau}} - \frac{E}{\tau}e^{-\frac{t}{\tau}} = \frac{E}{\tau}(\frac{r}{R}-1).e^{-\frac{t}{\tau}} \Rightarrow (\frac{dU_B}{dt})_{t=0} = \frac{E}{\tau}(\frac{r}{R}-1)e^{t}U_B(0) = E.$$

Donc, l'éq. de la tangente s'écrit : $U_B(t) = \frac{|\vec{r}|}{\tau} (\frac{r}{R} - 1) \cdot t + E$.

Déterminons alors l'intersection de cette tangente avec la droite $U_B = r \frac{E}{R}$.

Pour cela , il suffit de résoudre l'éq. : $\frac{E}{\tau}(\frac{r}{R}-1).\frac{t}{r}+E=r\frac{E}{R}\Rightarrow \frac{E}{\tau}(\frac{r}{R}-1).t=E.(\frac{r}{R}-1)$

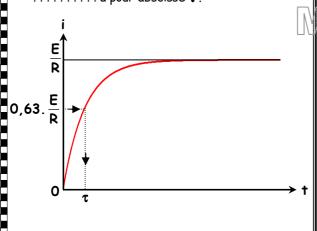


c) <u>Détermination graphique (troisième méthode)</u>:

□ <u>Cas de l'établissement</u> :

En remplaçant t par τ dans l'expression de i(t), on obtient:

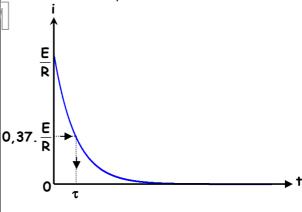
Donc , graphiquement , le point d'ordonnée τ a pour abscisse τ .



□ <u>Cas de la rupture</u> :

En remplaçant $\boldsymbol{\tau}$ par $\boldsymbol{\tau}$ dans l'expression de $\boldsymbol{i(t)}$, on obtient :

Donc , graphiquement , le point d'ordonnée \dots a pour abscisse τ .



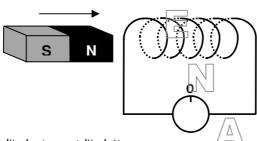
Proposée par Benaich Hichem

SERIE DE PHYSIQUE N° 2

Le dipôle RL

EXERCICE 1

On approche le pôle nord d'un aimant de la face d'une bobine reliée à un milliampèremètre ; on constate que l'aiguille de ce dernier dévie indiquant le passage d'un courant électrique .



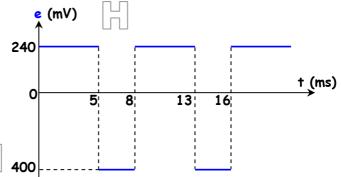
- 1°) Préciser l'inducteur et l'induit .
- 2°) Nommer le courant détecté par le milliampèremètre et représenter sur la figure son sens

Num.: 1°) Aimant: inducteur; bobine induit; 2°) Courant induit.

EXERCICE 2

La f.é.m. d'auto-induction e rééle par une bobine d'inductance L = 40 mH varie au cours du temps selon la loi représentée graphiquement ci-dessous :

- 1°) Exprimer le taux de variation di en fonction de e et L .
- **2°)** Calculer dans chacun des intervalles de temps [0;5 ms] et [5 ms; 8 ms].
- 3°) Représenter graphiquement i en fonction de t sachant qu'à l'instant t = 5 ms, i = 0.



Num.: 1°) $\frac{di}{dt} = -\frac{e}{L}$; 2°) Pour $t \in [0; 5 \text{ ms}]$ $\frac{di}{dt} = -6\text{V.H}^{-1}$; pour $t \in [5 \text{ ms}; 8 \text{ ms}]$, $\frac{di}{dt}$

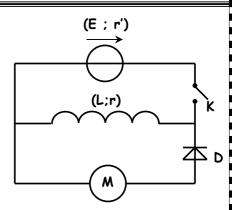
 3°) Pour t∈ [0; 5 ms], i=-6t+0,03; pour t∈ [5 ms; 8 ms], i=10t-0,05

EXERCICE 3

Un générateur, de force électromotrice E = 6 V et de résistance interne $r' = 2 \Omega$, alimente un circuit constitué par une bobine d'inductance L = 1,8 H et de résistance interne r = 8 Ω aux bornes de laquelle on a placé un petit moteur monté en série avec une diode en silicium comme l'indique la figure ci-contre.

1°) Lorsqu'on ferme l'interrupteur K , indiquer le sens du courant qui s'établit dans le circuit . Monter que son intensité maximale prend la valeur $I_0 = 0.6 A$.

Pourquoi le moteur ne fonctionne-t-il pas ?



Proposée par Benaich Hichem

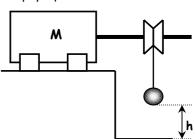
SERIE DE PHYSIQUE N° 2

Le dipôle RL

- 2°) Lorsqu'on ouvre l'interrupteur K , on constate que le moteur se met à tourner pendant quelques secondes . Préciser le sens du courent qui le parcourt et le phénomène physique mis en évidence .
- 3°) Pendant son fonctionnement, le moteur est capable de soulever un corps de masse m = 20 g à une hauteur h = 18,5 cm par l'intermédiaire d'une poulie qu'il entraîne comme l'indique la figure ci-contre.

Calculer le travail mécanique fourni par le moteur ; le comparer à l'énergie magnétique emmagasinée par la pobine . En déduire le rendement de l'opération .

On donne $\|\vec{g}\| = 10 \text{ N.kg}^{-1}$.



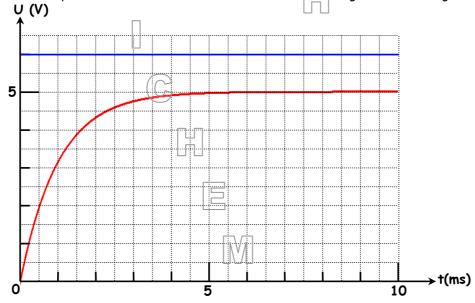
Rép. Num.: 1°) En régime permanent, $\frac{di}{dt} = 0$, loi des mailles : $I_0 = \frac{E}{r + r'} = 0.6A$; diode non passante ;

2°) Phénomène d'auto-induction ; **3**°) W(\vec{P})=- \vec{m} || \vec{g} ||.h=-37mJ < $E_L = \frac{1}{2}$ L. $I_0^2 = 324$ mJ ; $\rho = \frac{W}{E_L} = 11,42\%$

EXERCICE 4

Un circuit électrique comporte , placés en série , un générateur de tension de f.é.m. E = 6 V , une bobine d'inductance L et de résistance interne r et un conducteur ohmique de résistance R_0 = 50 Ω .

A l'aide d'un oscilloscope à mémbire, on visualise simultanément les escillogrammes de la figure ci-dessous.



- 1°) Schématiser le montage électrique et préciser les connexions à effectuer avec l'oscilloscope.
- 2°) Donner l'expression de la tension aux bornes de la bobine en fonction de r , L , i et $\frac{di}{dt}$.
- 3°) A l'aide des oscillogrammes obtenus :
 - a) Déterminer la valeur de l'intensité I_0 du courant électrique qui s'établit dans le circuit en régime permanent .
 - **b)** Calculer la valeur de la résistance interne r de la bobine .
- **4°)** Déterminer graphiquement la constante de temps τ du dipôle RL .

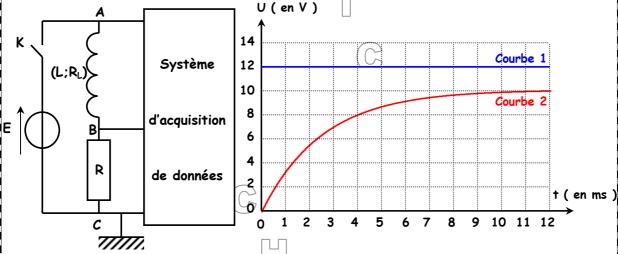
Le dipôle RL

- 5°) En déduire la valeur de l'inductance L .
- 6°) Calculer l'énergie emmagasinée par la bobine en régime permanent .

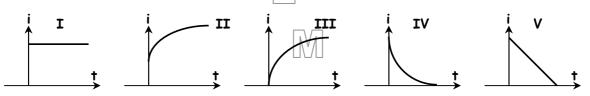
EXERCICE 5

Un dipôle est constitué de l'association en série d'une bobine présentant une inductance L et une résistance R_L avec un conducteur ohmique de résistance $R=40~\Omega$ ce dipôle est alimenté par un générateur de tension de f.é.m. E .

Les bornes A, B, et C sont reliées aux entrées d'une carte d'acquisition permettant d'enregistrer l'évolution des tensions . A l'instant t = 0 , on ferme l'interrupteur K , l'enregistrement génère les courbes 1 et 2 .



- 1°) Quelle tension est représentée par la courbe 1?
- 2°) Quelle tension est représentée par la courbe 2?
- 3°) Quelle sera l'allure de la courbe de variation du courant i choisie parmi les quatre courbes ci-dessous ?



- 4°) Tracer l'allure de la courbe de variation de la tension u_{AB} .
- $\mathbf{5}^{\mathbf{o}})$ Donner la valeur E et l'intensité maximale \mathbf{I}_{max} atteinte par i .
- 6°) Etablir l'équation différentielle vérifiée par l'intensité du courant i . En déduire les valeurs de R_L et de L .

Rép. Num.: 1°) Courbe 1 : E ; 2°) Courbe 2 :
$$U_R(t)$$
 ; 3°) Courbe III ; 5°) E=12V ; $I_{max} = \frac{U_{R_{max}}}{R} = 0.25A$;

$$\textbf{6}^{\circ}) \; (R+R_L)i + L \; \frac{di}{dt} = E \; ; \; \text{en régime permanent} \; ; \; (R+R_L)I_{max} = E \\ \Rightarrow R_L = \frac{E}{I_{max}} - R = 8\Omega \; ; \; L = \tau. (R_L + R) = 0.12 H \; .$$

Proposée par Benaich Hichem

Figure 1

Ε

SERIE DE PHYSIQUE N° 2

Le dipôle RL

Masse

EXERCICE 6

Une bobine d'inductance L et de résistance interne négligeable, est placée dans un circuit comprenant un conducteur ohmique de résistance R et un générateur de f.é.m. E et de résistance interne négligeable comme l'indique la figure - 1 - .

L'intensité du courant électrique es t initialement

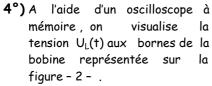
1°) Etablir l'équation différentielle vérifiée par l'intensité du courant i(t) .

2°) Vérifier que i(t) =
$$\frac{E}{R}$$
.(1 - $e^{-\frac{t}{\tau}}$) est solution de l'équation précédente avec $\tau = \frac{L}{R}$.

5

U_L(†) (V)

 $\boldsymbol{3}^{\boldsymbol{\circ}}\boldsymbol{)}$ Déterminer l'expression de la tension $U_L(t)$ aux bornes de la bobine .



Déduire graphiquement :

- a) La f.é.m. E de la pile .
- **b)** La constante de temps τ du circuit.
- 5°) Déterminer valeur lα l'inductance L de la bobine sachant que R = 100 Ω .
- $f 6^\circ$) Déduire l'intensité I_0 du courant lorsque le régime permanent s'établit .

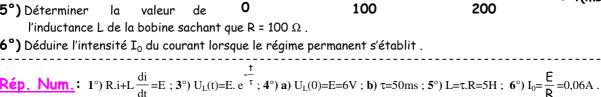


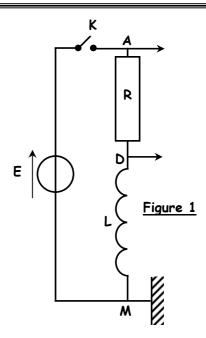
Figure 2

EXERCICE 7 (Bac 2008 (section informatique))

On réalise un circuit électrique AM comportant en série un conducteur ohmique de résistance $R = 50 \Omega$, une bobine (B_1) d'inductance L et de résistance supposée nulle et un interrupteur K. Le circuit AM est alimenté par un générateur de tension de force électromotrice (f.é.m.) E (figure 1).

Un système d'acquisition permet de suivre au cours du temps des tensions u_{AM} et u_{DM} .

A l'instant t = 0 s, on ferme l'interrupteur K. Les courbes traduisant les variations $u_{AM}(t)$ et $u_{DM}(t)$ sont celles de la figure 2 .



Proposée par Benaich Hichem

SERIE DE PHYSIQUE N° 2

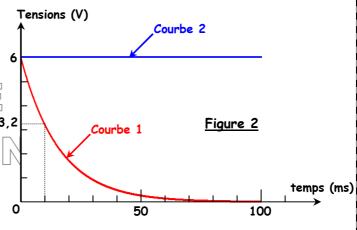
Le dipôle RL

1°) a) Montrer que la courbe 1 correspond à $u_{DM}(t)$.

b) Donner la valeur de la f.é.m. du générateur.

2°) a) A l'instant t₁ = 10 ms , déterminer graphiquement la valeur de la tension u_{B₁} aux bornes de la bobine (B₁) 3,2 et déduire la valeur de la tension u_R aux bornes du conducteur ohmique .

b) A l'instant t_2 = 100 ms , montrer que l'intensité du courant électrique qui s'établit dans le circuit électrique est I_0 = 0,12 A .



3°) a) Déterminer graphiquement la valeur de la constanțe de temps τ du dipôle RL .

b) Sachant que $\tau = \frac{L}{R}$, déterminer la valeur de l'inductance L de la bobine (B₁).

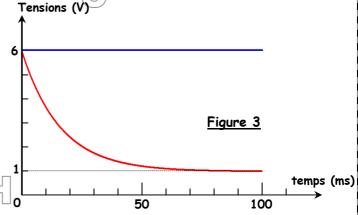
c) Calculer l'énergie emmagasinée dans la bobine (B_1) en régime permanent .

4°) On remplace la bobine (B_1) par une bobine (B_2) de même inductance L mais de résistance r non nulle . Les courbes traduisant les variations de $u_{AM}(t)$ et $u_{DM}(t)$ sont celles de la figure 3 .

a) Montrer qu'en régime permanent, la tension aux bornes de la bobine(B₂) est donnée par la relation :

 $u_{B_2} = \frac{r.E}{r+R}$

b) Déduire la valeur de la résistance de la bobine .



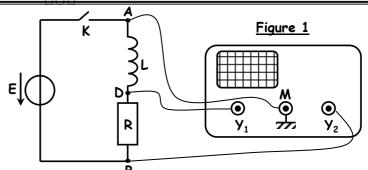
Rép. Num.: 1°) a) $u_{AM} = E : courbe (2) ; b) E = 6V ; 2° a) <math>u_R = E - u_{B1} = 2.8V ; b) I_0 = \frac{E}{R} = 0.12A ; R.i + L \frac{di}{dt} = E ;$

3°) **a**) τ =16ms; **b**) L= τ .R=0,8H; **c**) $E_L = \frac{1}{2} L.L_0^2 = 5,76.10^{-3} J; 4°)$ **b** $) <math>r = \frac{R.u}{E - u}_{B_2} = 10\Omega$

EXERCICE 8 (Contrôle 2008)

Un circuit électrique est constitué par l'association en série d'un générateur de force électromotrice E = 6V , d'une bobine d'inductance L , d'un résistor de résistance R et d'un interrupteur K . Les résistances internes du générateur et de la bobine sont nulles .

Afin de visualiser simultanément les

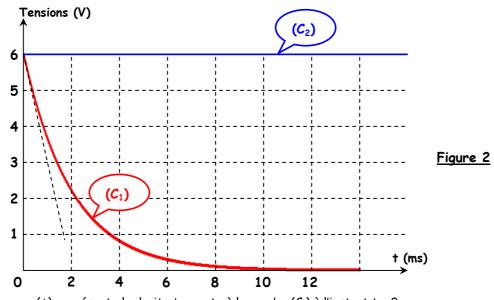


tensions u_1 aux bornes de la bobine et u_2 aux bornes du générateur , on réalise les connexions adéquates à un oscilloscope bicourbe comme l'indique la figure 1 et on ferme l'interrupteur K à un instant choisi comme origine des temps (t=0) .

Le dipôle RL

- 1°) a) Montrer que l'équation différentielle qui régit l'évolution de l'intensité i du courant électrique en fonction du temps s'écrit sous la forme : $\frac{di}{dt} + \frac{1}{\tau}i = \frac{E}{L}$, avec $\tau = \frac{L}{R}$.

 Nommer alors τ et donner son unité dans le système international .
 - **b)** Sachant que la solution de l'équation différentielle précédente est $i(t) = \frac{E}{R}(1 e^{-\frac{t}{\tau}})$, vérifier que la tension $u_1(t)$ aux bornes de la bobine s'écrit : $u_1(t) = Ee^{-\frac{t}{\tau}}$.
- **2°)** Lorsque la valeur de la résistance R = 50 Ω , on obtient les oscillogrammes représentés sur la figure 2 .



- (Δ) représente la droite tangente à la courbe (\mathcal{C}_1) à l'instant t = $\mathsf{0}$.
- **a)** Identifier parmi les courbes (C_1) et (C_2) celle qui correspond à $u_1(t)$. justifier la réponse.
- **b)** En exploitant le graphe , déterminer la valeur de τ et déduire celle de l'inductance L .
- c) Déterminer l'expression de la tension $u_3(t)$ aux bornes du résistor de résistance R en fonction de t, E et τ .
- **d)** Sur le graphe de la figure 2, tracer l'allure de la courbe (C_3) correspondant à $u_3(t)$.

Rép. Num.: 1°) a) τ : constante de temps (en s); 2°) b) τ =2ms; L= τ .R=0,1H; c) $u_3(t)$ =R.i(t)=E(1-e $\frac{t}{\tau}$); d)