Lycée 15 Novembre 1955	Sciences physiques	Année scolaire 2019/2020
M.Abdmouleh Nabil	Série N°6	Bac: Sciences techniques

Exercice n°1

Le quadripôle schématisé sur la figure 2 est constitué d'un amplificateur opérationnel, supposé idéal et polarisé à \pm 15 V, de deux conducteurs ohmiques de résistances respectives R_1 et R_2 et d'un condensateur de capacité C. Les tensions d'entrée et de sortie de ce quadripôle sont notées, respectivement, u_E(t) et u_S(t). Avec un générateur basse fréquence, on applique à l'entrée du quadripôle une tension sinusoïdale $u_E(t) = U_{Em} \sin(2\pi N t)$, d'amplitude constante U_{Em} et de fréquence N réglable.

La tension de sortie du quadripôle est : $\mathbf{u}_{S}(t) = \mathbf{U}_{Sm}\sin(2\pi Nt + \varphi_{S})$.

- A-1-Justifier qu'il s'agit d'un quadripôle linéaire.
 - 2-Exprimer l'intensité du courant d'entrée i₁:

a- en fonction de u_E(t) et de R₁,

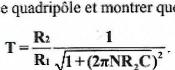
b- en fonction de C,
$$R_2$$
, $u_S(t)$ et $\frac{du_S(t)}{dt}$.

3- Montrer que l'équation différentielle régissant les variations de us (t) est :

$$R_1 C \frac{du_S(t)}{dt} + \frac{R_1}{R_2} u_S(t) = -u_E(t)$$
.

4- a- Etablir l'expression de la transmittance T de ce quadripôle et montrer que :

$$T = \frac{R_2}{R_1} \frac{1}{\sqrt{1 + (2\pi N R_2 C)^2}}.$$



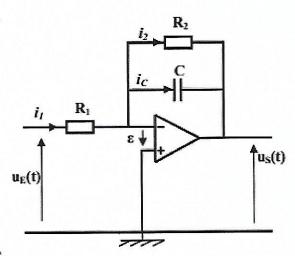
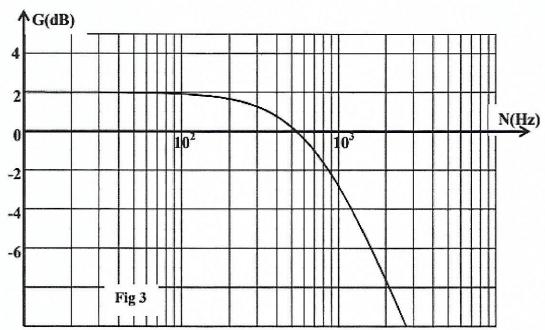


Fig 2

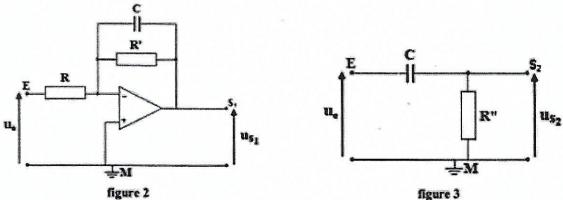
- b- Déterminer les limites de la transmittance T, pour les hautes et les basses fréquences.
- c- En déduire qu'il s'agit d'un filtre électrique.
- d- Préciser sa nature (passe-bas, passe-haut, passe-bande).
- e- Déterminer l'expression de la fréquence de coupure N_c de ce filtre.
- B- L'étude expérimentale de ce filtre, permet de tracer la courbe de réponse G = f(N) donnée par la figure 3, avec G le gain du filtre et N la fréquence du signal d'entrée.
 - 1- Par exploitation de la courbe de réponse G = f(N), déterminer :
 - a- la valeur du gain maximal G₀ de ce filtre,
 - b- la fréquence de coupure N_c, en précisant la méthode utilisée,
 - c- la largeur de la bande passante de ce filtre.
- 2- Calculer la valeur de la capacité C du condensateur et la valeur de la résistance R1 du conducteur ohmique, sachant que $R_2 = 220 \Omega$.

- 3- On considère deux signaux électriques S_1 et S_2 de fréquences respectives, $N_1 = 300$ Hz et $N_2 = 900$ Hz
 - a- Préciser, en le justifiant, le signal pour lequel le filtre en question est passant.
- b- Proposer une méthode expérimentale permettant de rendre ce filtre passant pour les deux signaux électriques S₁ et S₂, tout en gardant la valeur de G₀ constante.
- 4- Tracer, sur le graphique de la figure 3 (de la feuille annexe de la page 5/5 à rendre avec la copie), l'allure de la courbe de réponse G = f(N) de ce filtre lorsque N₂ devient sa fréquence de coupure.



Exercice n°2

A l'aide d'un amplificateur opérationnel supposé idéal, et polarisé à \pm 15 V, de deux condensateurs de même capacité $\mathbb{C}=0,47~\mu F$ et de trois conducteurs ohmiques de résistances R, R' et R'', on réalise deux filtres électriques (F₁) et (F₂) schématisés respectivement sur les figures 2 et 3. L'entrée de chacun de ces filtres est alimentée par un générateur délivrant une tension alternative sinusoïdale $\mathbf{u}_{e}(t)$ d'amplitude constante \mathbf{U}_{Em} et de fréquence N réglable.



Les tensions de sortie $\mathbf{u}_{s_1}(t)$ et $\mathbf{u}_{s_1}(t)$ de $(\mathbf{F_1})$ et $(\mathbf{F_2})$ sont sinusoïdales de même fréquence N que la tension d'entrée $\mathbf{u}_{e}(t)$ et d'amplitudes respectives $\mathbf{U}_{s,m}$ et $\mathbf{U}_{s,m}$.

On donne les expressions des gains $\mathbf{G_1}$ et $\mathbf{G_2}$ respectivement de $(\mathbf{F_1})$ et $(\mathbf{F_2})$:

$$G_1 = 20 \log \frac{R'}{R} - 10 \log \left[1 + (2\pi NR'C)^2 \right] \text{ et } G_2 = -10 \log \left[1 + \frac{1}{(2\pi NR''C)^2} \right]$$

où log désigne le logarithme décimal.

Un filtre électrique est supposé passant lorsque son gain G satisfait la condition: $G \ge G_0 - 3dB$ avec G_0 son gain maximal.

1-Définir un filtre électrique.

2-Préciser, en le justifiant, s'il s'agit d'un filtre passif ou actif pour (F1) et (F2).

3-On suit l'évolution du gain G de chacun des filtres (F₁) et (F₂) en fonction de la fréquence N. On obtient alors les courbes (E) et (E') représentées sur la figure 4 de la page 5/5 (feuille annexe).

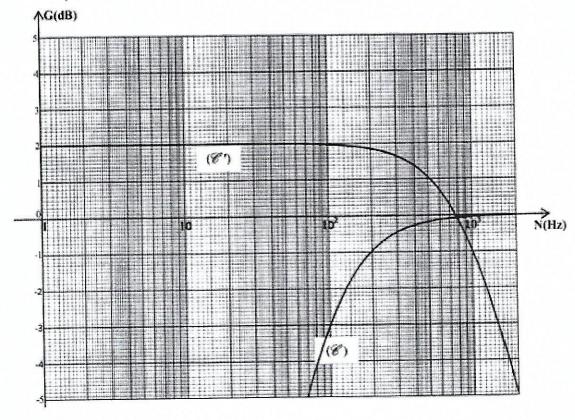


figure 4

En exploitant les courbes (\mathscr{C}) et (\mathscr{C}') ainsi que les expressions de G_1 et G_2 :

a-vérifier que la courbe (\$\mathbb{C}\$) correspond à l'évolution du gain G_2 du filtre (\$F_2\$) en fonction de la fréquence N;

b-déterminer les valeurs maximales G_{0_1} et G_{0_2} respectivement de G_1 et G_2 ;

c-identifier, en le justifiant, lequel des deux filtres (F₁) et (F₂) peut amplifier la tension électrique;

d-déterminer les fréquences de coupure NC1 et NC2, respectivement, de (F1) et (F2);

e-préciser la nature (passe bas, passe bande, passe haut) de chacun des filtres;

f- hachurer, sur la figure 4 de la page 5/5 (feuille annexe), le domaine de fréquence pour lequel les deux filtres (F₁) et (F₂) soient passants pour une même fréquence.

4-a-Montrer que les fréquences de coupure NC1 et NC2, respectivement, des filtres (F1) et

(F₂), ont pour expressions:
$$N_{CI} = \frac{1}{2\pi R'C}$$
 et $N_{C2} = \frac{1}{2\pi R''C}$.

b-Calculer les valeurs de R, R' et R".

5-Etablir la condition que doit satisfaire les résistances R, R' et R'', pour avoir à la fois, la même valeur maximale G₀ du gain et la même fréquence de coupure N_C de (F₁) et (F₂).